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SUMMARY

Non-linear shallow water equations are a useful approximation to phenomena such as estuary dynamics,
tidal propagation, breaking of a dam, �ood waves, etc. Quite frequently they involve propagation over
dry beds and drying of wet zones, for which boundary changes. To solve this problem either special
techniques such as remeshing and Arbitrary Lagrangian Eulerian formulations or algorithms initially
developed for �ows exhibiting shocks have been proposed in past years. The purpose of this paper is
to show how classical =nite elements formulations, such as Taylor–Galerkin can be applied to solve
the problem to wetting–drying areas in a simple yet e>cient manner. Copyright ? 2002 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

Some very e>cient =nite element schemes have been proposed in the past years for convection
dominated problems. Among them, two e>cient alternatives are the so-called Taylor–Galerkin
[1–3] and Characteristics-Based Galerkin [4–6] formulations. They have been successfully
applied to a great variety of problems, such as pollutant transport, compressible and incom-
pressible �uid dynamics problems, and also to coastal and river mechanics phenomena. In the
latter case, it is possible to make some assumptions which lead to what is known as shallow
water or depth-integrated equations.

As in many non-linear �uid dynamics problems, shocks and discontinuities can be produced.
One of the most interesting and demanding problems, both from the practical and the numerical
points of view, is that of breaking of a dam. This problem may involve, depending on whether
the �ood wave propagates over a dry or a ‘wet’ bottom, di>culties arising either from the
existence of moving boundaries or from propagation of a shock.
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To solve the latter, special algorithms initially developed for high-speed �ows exhibiting
shocks have become more widespread in the past years, as they are claimed to provide higher
resolution at shocks [7–10].

In a recent paper by Satya Sai et al. [11] the performance of specialized and classical
algorithms on high-speed problems with shocks was compared, with the result that general
purpose algorithms provided a satisfactory approach.

The purpose of this paper is to extend these results to the special case of catastrophic
�ood waves, verifying that classical yet robust =nite element algorithms are still attractive
alternatives.

The paper is structured as follows. First of all, the depth-averaged equations are presented.
The formulation here diLers from those that have been previously used with both Taylor–
Galerkin [2; 3] and Characteristic-Based-Galerkin [6] algorithms. Then, the Taylor–Galerkin
algorithm will be used to discretize the depth-integrated equations. Following this section, we
will present a comparison with the analytical solutions which exist for the dam-break problem
over both dry and wet beds. Finally, several applications to real problems such as breaking
of a dam, water supply deposits and �ow slides will be presented.

Depth-averaged models provide an attractive alternative which reduces the computational
cost. Here, the variables reduce to depth of �ow and two-dimensional velocities. Still, the
problem of propagation over dry areas remains, and adaptive remeshing and Arbitrary
Lagrangian Eulerian (ALE) techniques have been proposed [12] to follow the domain oc-
cupied by the �uid. There, a classical general-purpose Characteristics-Based Galerkin =nite
element scheme was used.

2. MATHEMATICAL MODEL

The model used in this paper for solving the free surface �ow problem is based on the
solution of the shallow water equations.

These equations are obtained from the Navier–Stokes equations considering an incompress-
ible, isothermal �uid and assuming that the vertical component of the acceleration is negligible.
Furthermore, the contribution of the viscous forces is also typically neglected. The shallow
water governing equations are =nally obtained by depth integrating the resulting mass and
momentum conservation equations. The details of the derivation can be found in standard text
books [13; 14].

Using the notation described in Figure 1, the shallow water equations are:
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Figure 1. Shallow water problem notation.

where u; v are the components of the depth averaged velocity; �s and �b are the free sur-
face (wind) and bottom (friction) traction vectors; r is the Coriolis force vector; pa is the
atmospheric pressure; and � is the �uid density.

These equations are written in a compact form as:

@h
@t

+ div(U) = 0

@U
@t

+ div(u ⊗U) =−gh grad 
+ �s + �b + r− h
�
gradpa

(1)

where U= uh.
For the sake of simplicity and without loss of generality, the contribution to the source

term from the Coriolis force, the wind tractions and the atmospheric pressure gradients are
ignored in future derivations.

With regard to the bottom friction, �b, either the usual Chezy–Manning formula which, after
depth integration and divided by the �uid density, is

�b =
gn2|u|u
h1=3 (2)

or more complex ones, as those used in debris �ow analyses [15],

�b =
c
�
+ gh tan�

u
|u| +

gn2u|u|
h1=3

can be considered.
However, as a grad 
 component exists, Equation (1) is not written in a conservative form.

Therefore, numerical methods used to solve conservation laws written in the conservative
form, such as the Taylor–Galerkin method, are not applicable to solve these equations in their
current state.

To achieve this goal, Equation (1) is rewritten by considering that
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which results in
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where 1 is the unit tensor.
Now, by introducing
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these equations can be cast in the conservative form as

@M
@t

+ divF=S (4)

This h−
 formulation is the basis for the solution of coastal hydrodynamics problems using
the FEM [2; 13].

The same purpose of writing the shallow water equations in a conservative form can be
achieved by considering, see Figure 1, that

grad 
 = grad(h+ Z)

resulting now in
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In this case, the �ux tensor and the source vector are
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This formulation does not require knowledge of the value of H , hence the still water
level (SWL). This point could be an issue in problems involving drying–rewetting. Thus,
this formulation is more appropriate for the analyses of dam break, debris �ow problems
etc., while it can be used also for coastal engineering problems. For these reasons, this h-Z
formulation has been retained in this paper. However, as the reader will notice, the numerical
method developed in the next section is applicable for both formulations as it only requires
to incorporate the corresponding expression for the �ux tensor, F, and source vector, S.

3. NUMERICAL METHOD

There are a number of methods available within the FEM context to solve advection problems
as those governed by Equation (4), see for instance Reference [13]. Within these methods,
the Taylor–Galerkin procedure forwarded by Donea et al. [1; 16] was further developed and
applied by Peraire [2; 3] to the solution of the shallow water equations.

The Taylor–Galerkin algorithm can be considered as the FEM counterpart of the Lax–
WendroL procedure in the FDM. It basically consists of a higher order expansion of the
time derivative, followed by the spatial discretization of the resulting equation using the
conventional Galerkin weighting method.

However, following the general procedure—see Reference [13] for a detailed derivation—
requires the calculation of the derivatives of the �ux tensor, F, and source vector, S, relative
to the vector of unknowns, M, for each element in the mesh and performing a number of
matrix multiplications.

To avoid this computer memory and time consuming operations Peraire, [2], developed a
two-step algorithm that can be regarded as the FEM implementation of the Richtmyer scheme
[17]. Globally, the Richtmyer scheme is of second-order accuracy in space and time [18].
Due to its accuracy and simplicity it has been used by the authors to solve the shallow water
equations. For this reason, the next section describes the two-step algorithm.

3.1. Two-step Taylor–Galerkin algorithm

As introduced earlier, the Taylor–Galerkin procedure for solving Equation (4) starts from a
second-order expansion in time
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where the =rst-order time derivative of the unknowns can be calculated using Equation (4)
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To obtain the second-order time derivative, the two-step Taylor–Galerkin procedure con-
siders an intermediate step between t n and t n+1. The aim of this =rst time step is to calculate
the solution at a time t n+1=2. This step is followed by a second one that brings the solution
to t n+1.

In this way, the =rst step results in

Mn+1=2 =Mn +
Rt
2

(S− div F)n (7)

which allows the calculation of Fn+1=2 and Sn+1=2.
Considering now a Taylor series expansion of the �ux and source terms,
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Incorporating these expressions into the second-order time derivative
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Now replacing the expressions for the =rst- and second-order time derivatives in the Taylor
series expansion (Equation (6)), allows the determination of the unknowns at time t n+1

Mn+1 =Mn +Rt(Sn+1=2 − divF n+1=2)

This equation is spatially discretized using conventional Galerkin weighting to =nally result
in the system of equations to be solved to obtain the unknown increments in the variables at
the time step:
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3.2. Algorithmic aspects

3.2.1. Equation system solution. A system of equations

Mx= f

can be economically solved using a Jacobi iteration scheme

x(k+1) =x(k) +M−1
L (f −Mx(k))

where the superscript k is the iteration counter, if an approximate inverse matrix, M−1
L ; is

known in advance.
As in the case of Equation (8) an approximate inverse of the system matrix, M, is the

lumped mass matrix, the equation system (8) can be solved using this algorithm. Typically,
less than six iterations are enough to obtain an accurate solution.

3.2.2. Allowed time step. The above-described explicit algorithm is conditionally stable. To
ensure stability, the Courant number corresponding to the maximum velocity of propagation
has to ful=l the condition [2]

C=
|u|+ c
he

Rt6 

where

•  =1 for the lumped mass matrix and  =1=
√
3 for the consistent mass matrix,

• c=
√
gh is the wave speed of propagation and,

• he is a typical element length.

Thus, the convection component sets the constraint

RtCV6 
he

|u|+ c
(9)

Besides, another limitation is derived from the source term [2],

C
Sr
62

where Sr is the source number de=ned as

Sr =
|u|+ c
|S|=|V|he

Neglecting the contribution to the source number of the bed slope and considering the Chezy–
Manning bed resistance described by Equation (2), the corresponding maximum time allowed
from the source term is

RtSR6
2h4=3

gn2|u| (10)

Therefore, the maximum time step allowed to ensure algorithm stability is

Rt=min(Rtcv;Rtsr) (11)
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Finally, it has to be pointed out that in order to improved the accuracy and smooth out of
oscillations [13], the calculation of the unknowns at time t n+1=2 (Equation (7)), performed
at the element level uses the optimum time step value given by Equation (9). This optimal
value is calculated and used for each element in turn, while the minimum of Equation (11),
calculated for the whole mesh, is used in Equation (8) to ensure overall scheme stability.

3.2.3. Wetting and drying areas. One of the major issues that can be involved when solving
problems governed by the shallow water equations is the handling of drying and wetting areas.

A simple solution, useful when a single element can accommodate the elevation changes,
has been proposed by Lynch and Gray [19]. It consists in repositioning the nodes located at
the boundary along its normal as required by the elevation changes. In those cases involving
variations that cannot be accommodated by a single element and topological problems arise,
remeshing is necessary.

Another possibility consists in turning on and oL the elements and preserving the mass
in the process. This could be achieved by using the method suggested by Peraire [2]. He
proposed to use the nodal values of the variables to perform the interpolations within the
elements and to extend the area integrals only to the �ooded area of each element. This
procedure requires accurate knowledge of the position of the boundary after each time step.
However, nothing is said on this key point by Peraire.

To solve the issue of the interface position, the level set technique proposed by Sethian
[20], with the reinitialization used by Sussman et al. [21], can be used. This technique has
been successfully used by the authors in the solution of two-phase �ows [22] of �uids of a
general type. It has also been checked by the authors that, within the shallow water context,
this technique provides an accurate determination of the �ood-to-dry boundary position.

However, in most of the problems, the accuracy, and expense, brought into the solution by
incorporating the level set procedure to the problem solution would be unnecessary. Therefore,
in the examples shown in the next section, the authors followed the much simpler method of
interpolation within the elements using the nodal variables, considering a null value for the
variables corresponding to dry nodes. In this way, calculations to accurately determine the
position of the boundary within the partially dried–�ooded elements are not done.

It is worth mentioning that considering a null value for the water depth, h, is not allowed,
unless special precautions are taken, by methods using a pressure-like variable instead of the
water depth, such as the CBG, where the following change of variables is done [6]

p≡ 1
2g(h

2 −H 2)

Incorporating this pseudo-pressure in the continuity equation

@h
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+ div(U)=0

this equation becomes

1
gh

@p
@t

+ div(U)=0

where numerical di>culties are found when h is closed or equal to zero.
Finally, it is necessary to indicate that an interesting alternative has been recently proposed

in Reference [12]. It consists of using an ALE formulation joint to mesh adaptive re=nement.
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4. NUMERICAL EXAMPLES

The purpose of this section is to present several examples which show how the simple changes
introduced in the formulation allow modelling of phenomena such as drying–wetting areas and
shock propagation, which have not been dealt with before using the Taylor–Galerkin algorithm.
Therefore, the examples presented next are aimed at bringing new insights in the performance
of the algorithm rather than to prove the algorithm performance itself. All these numerical
examples have been solved using the h-Z formulation of the shallow-water equations and the
algorithm presented above.

It was mentioned in the introduction that there exist ad-hoc methods for such purposes
such as Riemann solvers and ALE formulations plus mesh re=nement. However, the Taylor–
Galerkin algorithm presents an excellent compromise between simplicity of formulation and
accuracy.

Of course, the Taylor–Galerkin (TG) method is not the unique classical =nite element
algorithm, and in the past years some improvements have been proposed. For instance,
it is worth mentioning here the Characteristic-Based Galerkin (CBG) method proposed in
References [4–6].

The reason of having chosen TG instead of CBG lies in the smaller dissipation presented
by the former. This will be illustrated in the =rst example.

4.1. Free oscillation of a sinusoidal wave

The =rst numerical example illustrates the dissipation performance of the two-step Taylor–
Galerkin algorithm. The example concerns a long rectangular channel where an initially sinu-
soidal wave is left free to oscillate.

The channel dimensions are 800× 80m and the still water level is 8m. Null bottom friction
is considered. The mesh comprises 375 nodes grouped in 628 linear triangles, see Figure 2.
The normal velocities along the boundary are set to zero.

Figure 2. Free oscillation of a sinusoidal wave: (a) mesh; and (b) initial surface elevation.
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Figure 3. Evolution of the calculated elevation on the vertical walls of the channel using the Taylor–
Galerkin and the Characteristic-Based Galerkin algorithms.

The initial condition consists of an imposed surface elevation described by


(x; t=0)=cos
(
2$

x
1600

)

that it is freely left to move by the acting gravity.
Figure 3 depicts the time evolution of the calculated elevation at the nodes located at

the left vertical wall. For comparison, the corresponding results obtained using an implicit
Characteristic-Based Galerkin procedure [6] are included in this =gure.

The reduction of the wave amplitude observed in this =gure, indicates that the Taylor–
Galerkin algorithm suLers numerical dissipation and that this dissipation is much smaller than
the corresponding to the Characteristic-Based Galerkin method.

Another point suggested by this =gure is that in the case of the Taylor–Galerkin algorithm,
non-linear eLects distort the initially sinusoidal wave given rise, as time advances, to a bore.

Figure 4 shows the surface elevation along the channel length at time zero and at t=1200,
revealing this eLect. If a smaller wave amplitude, such as 0.2, than that used in this example,
2.0, is used, the initially sinusoidal wave maintains its shape through the calculations. Due to
the higher damping introduced by the CBG procedure, the ratio between the surface elevation
and the depth becomes increasingly smaller making non-linear eLects negligible in this case
as it is clear from Figure 3.

4.2. Flood waves over dry and wet bottoms

We will consider next two one-dimensional problems for which analytical solutions exist. A
one-dimensional channel of 2000 m length contains a dam situated at x=1000 m, =lled with
water of constant depth of 10 m, as it can be seen in Figure 5. It has been assumed that the
bottom is horizontal, and that no friction exists.
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Figure 4. Surface elevation calculated using the Taylor–Galerkin procedure at two time steps,
showing the development of a bore.

Figure 5. One-dimensional dam problem.

The nature of the solution depends on whether the bottom on the right-hand side has water
or not. In the =rst case, solution consists of the propagation of a shock to the right, together
with a rarefaction wave, while in the second case the solution consists of one rarefaction
wave with speeds of

√
ghL (head) and −2

√
ghL (toe).

The =rst case can be used to illustrate how the TG algorithm performs in the propagation
of a shock. Figure 6 presents both the analytical and the computed solution.

4.3. Propagation of a rectangular hump on a slope

This example tests the drying and wetting capabilities of the algorithm. In this example a
rectangular hump of water is placed at the middle of a long rectangular channel and left free
to move.
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Figure 6. Propagation over a wet bottom.

Figure 7. Propagation of a rectangular hump on a slope. Problem layout.

The channel bed is considered frictionless with slope 2.5 per cent. The hump height and
width are 4 m, at its mid position, and 100 m respectively. The remaining domain is initially
dry.

Figure 7 depicts the problem layout and the mesh used to discretize the domain. The
mesh comprises 246 nodes forming 400 three-node triangles. Re�ective, i.e. Vv · Vn=0, boundary
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Figure 8. Propagation of a rectangular water hump on a slope.

conditions are prescribed on the channel walls with exception of the right vertical wall, where
open boundary conditions are used.

Figure 8 presents the evolution of the water elevation. It is observed that the water front
initially moves up and downwards, �ooding dry nodes. Once the maximum Z has been reached
and the front moves downwards, wet nodes become dried. Finally, as expected, all the domain
becomes dry.

4.4. Collapse of a water column

The next example concerns the collapse of a conical water column. Although during the
=rst instants of the column collapse, vertical accelerations need to be considered, once the
horizontal velocities are dominant, the shallow water equations provide a good approximation
to the problem solution.

The cone has a total height over the horizontal ground of 10 m and 1 m diameter. It is
located in the centre of an square domain of 5m length. Figure 9 depicts the problem layout.
The mesh is composed of 2949 nodes arranged in 5696 three-node triangles.

In order to get a bore and to qualitatively assess the performance of the Taylor–Galerkin
h-Z formulation, a non-zero still water level, 0:5 m, has been considered. Finally, the prob-
lem incorporates bottom friction using the Chezy–Manning resistance (Equation (2)), with
coe>cient n=0:1.

Figure 10 depicts the free surface elevations at diLerent times. These results are deemed as
qualitatively reasonable.

4.5. Broken dam

The last example further demonstrates the wetting and drying capabilities of the algorithm.
The example concerns the 2D dam-break problem. This problem is typically solved using
the shallow water equations although in the case of zero tailwater depth, the non-hydrostatic
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Figure 9. Collapse of a water column. Problem layout.

Figure 10. Collapse of a water column. Wave pattern at diLerent times.

pressure distribution existing just at the time the dam breaks, in�uences the long-term results
[23].

Figure 11 depicts the problem layout. The water front is initially located at a horizontal
position x=110 m. The breach is 75 m length and it is non-symmetrically located in the
dam. The water height in the reservoir is 10 m while downstream is initially dry. The mesh
comprises 1844 nodes grouped forming 3476 three-node triangles. Null bottom friction has
been considered.
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Figure 11. Dam-break problem layout.

Figure 12. Dam-break problem. Evolution of the water elevation assuming downstream dry bed.
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Figure 13. Dam-break problem. Water height calculated at t=5:03 s considering a
tailwater depth of 0:1 m.

All the boundaries are considered as re�ective, impermeable walls with the exception of the
right vertical and horizontal upper and lower boundaries downstream which are considered
open boundaries.

Figure 12 depicts the contours of the water elevation for diLerent times during the calcu-
lation for dry bed conditions. In this case, dry-bed conditions, as the problem consists of a
rarefaction fan, there is a smooth transition in the water depth from the breach to the dry
bed.

However, if a small tailwater depth, 0:1 m, is considered, a bore forms and moves down-
stream, Figure 13.

This results agree with those reported in the literature using more sophisticated methods,
see for instance References [8; 9; 24].

5. CONCLUSIONS

The discretization with the Taylor–Galerkin algorithm of the proposed h-Z mathematical model
provides a simple yet e>cient alternative to more complex ad-hoc algorithms for problems
presenting either shocks or drying–wetting areas.

The performance of the proposed approach has been assessed using a set of examples
representative of the type of problems of interest.
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